Conclusive evidence on the mechanism of the rhodium-mediated decyanative borylation.

نویسندگان

  • Miguel A Esteruelas
  • Montserrat Oliván
  • Andrea Vélez
چکیده

The stoichiometric reactions proposed in the mechanism of the rhodium-mediated decyanative borylation have been performed and all relevant intermediates isolated and characterized including their X-ray structures. Complex RhCl{xant(P(i)Pr2)2} (1, xant(P(i)Pr2)2 = 9,9-dimethyl-4,5-bis(diisopropylphosphino)xanthene) reacts with bis(pinacolato)diboron (B2pin2), in benzene, to give the rhodium(III) derivative RhHCl(Bpin){xant(P(i)Pr2)2} (4) and PhBpin. The reaction involves the oxidative addition of B2pin2 to 1 to give RhCl(Bpin)2{xant(P(i)Pr2)2}, which eliminates ClBpin generating Rh(Bpin){xant(P(i)Pr2)2} (2). The reaction of the latter with the solvent yields PhBpin and the monohydride RhH{xant(P(i)Pr2)2} (6), which adds the eliminated ClBpin. Complex 4 and its catecholboryl counterpart RhHCl(Bcat){xant(P(i)Pr2)2} (7) have also been obtained by oxidative addition of HBR2 to 1. Complex 2 is the promoter of the decyanative borylation. Thus, benzonitrile and 4-(trifluoromethyl)benzonitrile insert into the Rh-B bond of 2 to form Rh{C(R-C6H4)═NBpin}{xant(P(i)Pr2)2} (R = H (8), p-CF3 (9)), which evolve into the aryl derivatives RhPh{xant(P(i)Pr2)2} (3) and Rh(p-CF3-C6H4){xant(P(i)Pr2)2} (10), as a result of the extrusion of CNBpin. The reactions of 3 and 10 with B2pin2 yield the arylBpin products and regenerate 2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rhodium-catalyzed dehydrogenative borylation of cyclic alkenes.

A rhodium-catalyzed dehydrogenative borylation of cyclic alkenes is described. This reaction provides direct access to cyclic 1-alkenylboronic acid pinacol esters, useful intermediates in organic synthesis. Suzuki-Miyaura cross-coupling applications are also presented.

متن کامل

Rhodium‐Catalyzed Decarbonylative Borylation of Aromatic Thioesters for Facile Diversification of Aromatic Carboxylic Acids

Transformation of aromatic thioesters into arylboronic esters was achieved efficiently using a rhodium catalyst. The broad functional-group tolerance and mild conditions of the method have allowed for the two-step decarboxylative borylation of a wide range of aromatic carboxylic acids, including commercially available drugs.

متن کامل

Rhodium-Catalyzed Dehydrogenative Borylation of Aliphatic Terminal Alkenes with Pinacolborane.

Aliphatic terminal alkenes react with pinacolborane at ambient temperature to afford dehydrogenative borylation compounds as the major product when iPr-Foxap is used as the ligand with cationic rhodium(I) in the presence of norbornene, which acts as the sacrificial hydrogen acceptor. The reaction is applied to the one-pot syntheses of aldehydes and homoallylic alcohols from aliphatic terminal a...

متن کامل

Regiospecific functionalization of methyl C-H bonds of alkyl groups in reagents with heteroatom functionality.

We report the regiospecific, rhodium-catalyzed borylation of saturated terminal C-H bonds in molecules with existing functionality. Moderate to good yields were obtained with the organic substrate in excess and as limiting reagent. The borylations of trialkylamines, protected alcohols, protected ketones, and fluoroalkanes occurred regiospecifically at the methyl group that is least sterically h...

متن کامل

Nonsense-mediated mRNA decay among coagulation factor genes

Objective(s): Haemostasis prevents blood loss following vascular injury. It depends on the unique concert of events involving platelets and specific blood proteins, known as coagulation factors. The clotting system requires precise regulation and coordinated reactions to maintain the integrity of the vasculature. Clotting insufficiency mostly occurs due to genetically inherited coagulation fact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 137 38  شماره 

صفحات  -

تاریخ انتشار 2015